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ABSTRACT 
 

The purpose of this work was to study the possibility of using atomic force microscopy in the assessment of 

morphostructural changes at increased erasability of teeth. For the experiment, 100 teeth samples from patients of various 

age groups living in the North Caucasus Federal District of Russia were obtained. Atomic force microscopy made it 

possible to establish that in teeth with manifestations of increased erasability, the diameter of the tubes and their number 

are smaller both on the surface (3.8 times) and in the middle layer (2.2 times) than in the control group. The orientation of 

the tubes was indistinctly expressed, the surface has a flattened, smoothed relief. The uniformity of the dentin structure 

was most likely associated with inclusions of foreign substances, pigments penetrating from the oral cavity through the 

exposed surface of dentin in the abrasion facet, as well as with the protective function of the pulp and activation of the 

synthesis of substitutive (irregular) dentin. The lumen of the surface tubules was reduced or even completely obliterated. 

Hypermineralization zones around dentine tubules were expanding, associated with a dense arrangement of mineral 

crystals and globules, and the microhardness of the surface layer was increasing. In deeper layers, pathological changes 

were less pronounced. The structure of dentin resembles the structure of the 2nd and 3rd layers of healthy dentin. However, 

the lumen of the dentine tubules was still smaller (up to 0.5 µm). 
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Introduction 

Changes in the morphological structure of the tooth during 

pathological processes significantly affect the resistance of 

the enamel to adverse factors [1, 2]. This affects the 

durability of the seal, marginal adaptation, and compliance 

of the restoration work with clinical and aesthetic evaluation 

criteria [3, 4]. Notably, quantitative and qualitative 

indicators of the micro- and nanostructure of hard dental 

tissues, as well as the processes occurring in enamel and 

dentin with increased erasability, have not been practically 

studied to date. Moreover, there are no studies in the 

available literature justifying the choice of filling materials 

for the restoration of teeth subject to increased abrasion. 

It can be assumed that the appearance of nanofilled adhesive 

systems and composite materials capable of interacting with 

tooth tissues and embedding into their structure at the 

nanoscale will solve this problem [5-8]. The functional 

monomers of the adhesive system react with hydroxyapatite 

and form a nanointeractive hybrid zone [9-11]. In addition, 

nanofilled materials, having sufficient strength to occlusal 

load, make it possible to preserve the polishing luster of 

restoration for a long time, and reproduce anatomical 

features, color nuances, and transparency of hard tooth 

tissues [12-15]. 

In this aspect, an integral assessment of the morphological 

features of the structure of the hard tissues of teeth with 

increased erasability using modern experimental 

microscopic research methods becomes relevant [16]. 

Scanning electron microscopy is one of the most often used 

methods to study the structure of biosystems [17]. 

Transmission electron microscopy uses the wave properties 

of moving electrons to obtain high-resolution images of the 

object under study [18]. Using this method, the features of 

teeth microstructure in representatives of various age groups 

have been studied [19-21]. Scanning electron microscopy 

makes it possible to study biomolecules in subnanometer 

resolution since the surface of the sample is examined using 

a very thin beam with a diameter of only a few angstroms 

[22]. The process of forming a hybrid zone during sealing 

with various composite materials and adhesive systems has 

been studied through the use of this particular microscopy 

technique [23]. 
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The most promising microscopy method that allows us to 

obtain images on an atomic and nanometer scale is atomic 

force microscopy (AFM). AFM generates high-resolution 

images of a sample by scanning it using microscopic 

mechanical, electrical, optical, thermal, and other probes 

[24, 25]. The probe is located at the free end of a miniature 

cantilever [26]. It measures the weak interaction forces 

arising between the tip and the surface of the sample, 

determining changes in the reflection of the laser beam [27, 

28]. The image of the surface relief is recorded using a 

movable piezoelectric slide table, which moves either the 

sample over the tip or the tip over the surface of the sample 

[29]. In biomedical applications, AFM is used to study the 

structure and physical properties of proteins, erythrocytes, 

DNA, etc. [30-32]. However, there is very limited 

information in the available literature on the use of this 

method to study the morphological structure of hard tooth 

tissues in pathological processes [33]. 

Thus, the purpose of this work was to study the possibility 

of using AFM in the assessment of morphostructural 

changes at increased erasability of teeth. 

Materials and Methods  

For the experiment, 100 teeth samples from patients of 

various age groups living in the North Caucasus Federal 

District of Russia were obtained. The experimental group 

was formed from teeth with manifestations of increased 

tooth abrasion. The control group consisted of samples of 

intact teeth removed for orthopedic and orthodontic 

indications.  

The study of the microstructure and surface properties of 

enamel and dentin was carried out using Explorer AFM 

(Thermo Microscopes, USA). The surfaces of longitudinal 

sections of teeth with a thickness of 1-1.5 mm prepared using 

a low-speed drill and a diamond separation disc were studied 

[34]. Flexible abrasive discs were used for sample grinding. 

Optical electron microscopy was performed on an electron 

probe microanalyzer SX 100 (Cameca, USA). To carry out 

the analysis, special checkers with polished longitudinal 

sections of teeth fixed in epoxy resin were sprayed with 

carbon [35]. The analysis was performed at an accelerating 

voltage of 15 kV and a current strength of 40 nA. Natural 

minerals such as fluorapatite, chlorapatite, dolomite, albite 

and anhydrite were used as standard samples [36, 37]. 

Micrographs of various sections of dental tissues were 

obtained in the mode of secondary electrons with a voltage 

of 20 kV. 

Results and Discussion 

In the samples of intact incisors and incisors with increased 

erasability, four main zones were studied, which stand out 

visually well and are of the greatest interest in connection 

with the changes occurring in them during the development 

of the sclerosing process: I – enamel, II – surface (cloak) 

dentin, III – deep (periculpar) dentin, IV – newly formed 

sclerosed dentin, which forms in the tooth cavity with 

increased erasability. Detailed images of these zones in two 

teeth obtained in the mode of secondary electron microscopy 

are shown in Figure 1. It can be seen that a tooth with 

increased erasability is characterized by an inhomogeneous 

granular structure of the mantle dentin (Figure 1b), (sections 

3-5). The zone of overgrowth with highly mineralized 

sclerosed dentin is clearly distinguished (Figure 1b), 

(sections 7, 8). Differences in the direction of growth of 

crystals of intact periculpar dentin are visible in the zones 

directly adjacent to the pulp chamber (Figure 1a), (sections 

8, 9).

  
a) b) 

Figure 1. The point of the tested hard tissues of an intact tooth (a) and a tooth with the manifestation of erasability (b) 

and micrographs of individual zones of teeth obtained in the mode of secondary electron microscopy. 

Figure 2 shows photographs demonstrating the features of 

the topology (relief) of the surface of intact teeth and teeth 

with increased erasability, obtained using AFM. As can be 

seen, dentin is constructed from a basic substance (collagen 

fibrils, mineral phases – hydroxyapatites, phosphates, 

carbonates, calcium fluorides, an adhesive substance – 

hyaluronic acid, glycosaminoglycans), permeated by tubes 

in which the processes of odontoblasts and the endings of 
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nerve fibers penetrating from the pulp are located, which is 

in the line with the report of Salman and Hussein [38]. The 

interchannel substance is the most highly mineralized, and 

has a high density and significant hardness [39]. Dentine 

tubes start from the inner surface of the dentine and reach the 

enamel-dentine border. The tubes are unevenly distributed in 

the dentin substance [40]. It is worth noting, that in all the 

teeth studied, the largest number of tubules was located in 

the area adjacent to the pulp (periculpar dentin), and as they 

moved away from the pulp, their number decreased. All this 

is quite clearly shown in AFM scans (Figures 2 and 3). 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

 
g) 

 
h) 

Figure 2. Surface topography was obtained using 

optical (a, b) and atomic force (c-h) microscopes for an 

intact incisor (a, c (Zone 1), d (Zone 2), e (zone 3)) and 

incisor with a manifestation of increased erasability (b, 

f (Zone 1), g (Zone 2), h (Zone 3)). 
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a) 

 
b) 

 
c) 

Figure 3. Three-dimensional image of the surface 

obtained with an atomic force microscope for an intact 

incisor (a, b (Zone 3)) and incisor with manifestations of 

increased erasability (c (Zone 3)). 

According to the results obtained, in intact teeth, the 

diameter of the tubules varied from 0.5 to 2.5 microns. The 

width of the interchannel zone was from 4 to 8 microns. The 

maximum diameter of the tubules and the maximum number 

of tubules themselves were found in the periculpar dentin. 

The minimum values were found in the surface layers of 

dentin. In the intermediate layer of the mantle dentin, the 

diameter of the tubes was wider than in the surface zone, but 

their number was less than in the deep dentin. The dentine 

surface has uneven outlines due to bulges and crater-like 

depressions. The mouths of the tubules are usually located 

in the center of these depressions [41]. The walls of dentine 

tubes were uneven, which is due to the protrusion of 

individual mineral nanocrystals into their lumen, as well as 

micropores in the walls that serve for exchange between the 

tube and the intertubular zone [42]. Along the course of the 

tube, there were branches of a smaller diameter (Figures 2c-

2e). 

In teeth with manifestations of increased erasability, the 

diameter of the tubules and their number were smaller both 

on the surface (3.8 times) and in the middle layer (2.2 times) 

than in the control group. The orientation of the tubes was 

indistinctly expressed, the surface had a flattened and 

smoothed relief. The uniformity of the dentin structure was 

most likely associated with inclusions of foreign substances, 

pigments penetrating from the oral cavity through the 

exposed surface of dentin in the abrasion facet, as well as 

with the protective function of the pulp and activation of the 

synthesis of substitutive (irregular) dentin [43, 44]. The 

lumen of the superficial tubules was reduced or even 

completely obliterated. Hypermineralization zones around 

dentine tubules were expanding, associated with a dense 

arrangement of mineral crystals and globules, and the 

microhardness of the surface layer was increasing. In deeper 

layers, pathological changes were less pronounced [45]. The 

structure of dentin resembles that of the 2nd and 3rd layers of 

healthy dentin. However, the lumen of the dentine tubules 

was still smaller up to 0.5 µm (Figures 2f-2h). 

Conclusion 

Within the framework of this study, it was found that atomic 

force microscopy has great potential for application in the 

assessment of morphostructural changes in teeth with 

increased erasability. Notably, the experimentally revealed 

morphostructural changes in the hard tissues of teeth indicate 

the need for a differentiated approach to aesthetic and 

functional restoration with increased erasability and require 

a reasonable choice of restoration materials. 
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