

CURRENT TRENDS IN ACHIEVING HEMOSTASIS AMONG PATIENTS UNDERWENT ORAL SURGERIES: A SYSTEMATIC REVIEW

Majed Emad Alrasheed*, Othman Saleh Alrashed, Naif Falah Alanazi, Musaed Hameed Alanazi, Abdulrahman Mahal Alanazi, Sadeem Mohammed Alrubayan²

¹Ministry of Health, Riyadh, Saudi Arabia. alrasheedmajed111@gmail.com

²King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.

Received: 03 April 2025; Revised: 21 March 2025; Accepted: 22 June 2025

<https://doi.org/10.51847/xCCs0ZKDm0>

ABSTRACT

Effective oral surgery hemostasis is crucial for preventing complications and optimizing healing. While traditional methods (pressure, sutures, sponges) still dominate, autologous platelet concentrates, PRP and PRF, as well as newer topical agents, are gaining popularity. This systematic review assesses emerging trends and examines the clinical outcomes of various hemostatic techniques, focusing on high-risk groups such as anticoagulated patients. Findings demonstrate that biological agents such as PRF are capable of shortening bleeding time and stabilizing wounds and frequently allow procedures to be performed without the need for anticoagulation therapy. There is reasonable support for these new methods; however, further high-quality research is needed to define standard protocols.

Key words: Current trends, Achieving hemostasis, Oral surgeries, PRF.

Introduction

Achieving effective hemostasis during oral surgery is essential for avoiding complications like infection or delayed healing. For many routine surgeries, including basic tooth extractions, periodontal surgery, and implant placements, the baseline risk of bleeding is 4-6%. This risk is further complicated by anticoagulant or antiplatelet therapy, which raises postoperative hemorrhage risks to 9-12% [1]. Managing these risks is problematic: cessation of anticoagulants alleviates bleeding, but heightens the risk of thrombotic events [2]. While biological sutures, collagen, and gelatin sponges are effective in most cases, recent shifts towards autologous methods have proven more beneficial. Autologous platelet concentrates such as PRP and PRF provide patient-derived fibrin and growth factors. Platelets are crucial constituents in hemostasis, and within the blood, fibrin matrices have been known to enhance clot stability. In particular, PRF is a second-generation platelet concentrate produced through simple centrifugation devoid of anticoagulants. It incorporates platelets, leukocytes, and multiple cytokines to form a dense fibrin scaffold fostering wound sealing and advanced hemostasis [3]. The focus of this review is on the most recent advances concerning hemostasis in dental surgery, highlighting the biological methods in general and high-risk populations, bleeding disorders and those on anticoagulants.

Literature review

Platelet concentrates in oral surgery: Both PRP and PRF are extensively researched in terms of their regenerative and hemostatic effects. Conventional PRP is obtained through a two-step centrifugation process followed by activation, usually with bovine thrombin, which yields a gel rich in

platelets and growth factors [2]. In contrast, PRF is obtained via one-step centrifugation, yielding a fibrin clot rich in platelets and leukocytes without any additives. The organized fibrin network and cellular composition of PRF make it a superb autologous scaffold [2]. There are reports that PRF can accelerate soft-tissue healing and enhance clot formation. It has been reported to "promote wound healing, bone growth and maturation, wound sealing and haemostasis" especially in conjunction with grafts [1, 4]. Narrative reviews highlight numerous recent clinical studies documenting the use of PRF in extractions, ridge preservation, sinus lifts, and periodontal regenerative procedures with remarkable outcomes. In fact, PRF has become routinely used in third-molar extractions and bone augmentation procedures, often as an adjunct to reduce bleeding and expedite the healing process [1, 4].

The results of comparative trials, however, remain inconsistent. In one split-mouth extraction trial, all sockets treated with PRF reached hemostasis within a few minutes, though a specialized chitosan hydrogel was faster [3]. Still, patients receiving PRF reported lower levels of postoperative pain in some studies.

A recent meta-analysis indicated that PRF enhanced implant stability and facilitated more rapid bone healing after the placement of implants. This finding suggests that PRF has wider restorative effects [5]. As previously noted, platelet concentrates shorten bleeding time. A review from 2025 [6] reported that PRP and PRF could reduce hemostatic duration by 30% to 50% in oral surgeries. For instance, one of the reviews reported that PRF and other autologous platelet concentrates significantly shortened time-to-hemostasis and postoperative bleeding in anticoagulated

patients. These preparations also assist in soft-tissue healing while potentially reducing pain and infection, due to the release of mitogenic and angiogenic factors by the platelets.

Special populations

Patients with bleeding diatheses or who are on anticoagulants present additional challenges. Among acquired disorders, the use of direct Factor Xa inhibitors like rivaroxaban and apixaban is increasing by approximately ten percent annually. Many patients taking these medications cannot suspend them safely prior to undergoing simple dental procedures. Recent studies suggest that strong local hemostatic agents enable safe extraction while on continuous anticoagulant therapy. A 2023 investigation on split mouths revealed that PRF placed in extraction sockets provided reliable hemostasis comparable to gelatin sponges without any delayed bleeding [7, 8].

Indeed, the authors came to a conclusion suggesting that, “there is no need to discontinue FXa inhibitors because of a single-tooth removal,” in the case where PRF is employed [9]. Comprehensive reviews also agree—anticoagulated patients undergoing extraction with autologous platelet concentrate experienced much less postoperative bleeding and faster hemostasis without requiring a pause in medication [9]. In hereditary coagulopathies such as hemophilia or von Willebrand disease, the scarce data is supplemented by analogies from antifibrinolytic therapies, suggesting autologous fibrin matrices may reduce bleeding. Overall, the data support that the adjunct provided by APCs significantly improves outcomes in high-risk populations by enabling the continuation of systemic therapy while safely managing local hemorrhage [9].

The latest research is focused on refining these approaches. Some new injectable and advanced PRF types aim to improve cellular yield and some antibacterial properties through altered centrifugation protocols, particularly for periodontal cases [10]. Incorporating PRF or bone grafts/membranes to enhance guided bone regeneration around implants is becoming a standard in clinical practice due to evidence that PRF increases implant stability (approximately 2-point increase in ISQ in meta-analysis [10]. Its usage in osseointegration acceleration and stability during sinus lifts and ridge preservation is variable.

Nonetheless, various systematic reviews and clinical studies confirm that PRF and PRP are safe, beneficial for hemostasis and healing, and relatively simple to prepare at the chairside. For instance, a systematic review conducted in 2023 affirmed that PRF reliably enhances the stability of dental implants and may aid in bone formation [6, 10]. The use of platelet concentrates in periodontal surgery has gained significant attention as a therapeutic modality for regenerative surgery and also serves as an effective adjunct to hemostasis in flap operations.

In conclusion, more recent studies indicate that PRF and

PRP, as well as other fibrin matrices, have gained recognition as effective autologous hemostatic agents in oral surgery, delivering potent bleeding control and improving postoperative recovery for all patients, including those with bleeding tendencies [6]. That said, more rigorous research is still needed. While numerous studies document positive findings with PRF and PRP, systematic reviews highlight inconsistent approaches and call for more research to develop uniform methods. As research continues to advance, these methods are sure to become more integral in modern dentistry.

Materials and Methods

This systematic review seeks to assess and aggregate the existing literature on techniques and methods used for achieving hemostasis in patients undergoing oral surgical procedures. The methodology utilized in this review is aimed at providing some form of transparency and reproducible processes, as well as exhaustive coverage of literature relating to the topic. Below are the defined steps for this systematic review.

Research question identification

The systematic review is based upon a single primary research question: What are the current trends in achieving hemostasis among patients undergoing oral surgeries?

This question seeks to assess the various techniques, methods, and technologies utilized to control bleeding during oral surgeries, including extraction of teeth, implantation of dental prostheses, and even some mid-facial surgical procedures.

Inclusion and exclusion criteria

Inclusion and exclusion criteria were set to make certain that only the studies meeting the desired specifics and scope were selected for review. These criteria are as follows:

Inclusion criteria

- *Study design:* RCTs and observational studies such as cohort and case-control studies.
- *Population:* Patients who have undergone oral surgical procedures including; tooth extraction, dental implantation, and maxillofacial surgery.
- *Interventions:* Studies focusing on methods, agents, or devices that were intended to achieve hemostasis. These include conventional methods like application of pressure and suturing to topical hemostatic agents and laser, electrocautery, or PRP/PRF more modern techniques.
- *Language:* Studies published in English.
- *Time frame:* Studies published in the last decade (2012-2022) to keep track of the most recent advancements and developments.

Exclusion criteria

- **Study design:** Excluded were case reports, editorials, letters to editors and other publications that lack peer review.
- **Population:** Excluded are those studies that do not concentrate on oral surgeries or involve patients with some underlying conditions affecting hemostasis like severe bleeding disorders.
- **Interventions:** Focus on irrelevant treatments like administering general anesthesia without consideration of hemostatic measures are excluded.

Search strategy

A number of electronic databases were searched to locate relevant studies. The following databases were searched:

- PubMed
- Cochrane Library
- Scopus
- Google Scholar
- ClinicalTrials.gov

The search included combinations of the following keywords:

- “Laser technology”
- “Electrocautery”
- “Platelet-rich plasma (PRP)”
- “Platelet rich fibrin (PRF)”
- “Hemostasis”
- “Oral surgery”
- “Dental extraction”
- “Dental implants”
- “Maxillofacial surgery”
- “Hemostatic agents”

The search had no restriction on the date of publication; however, only English publications were considered. Additionally, the reference lists of the selected studies were searched manually to find other relevant articles.

Study selection process

The study selection process includes the following steps:

- **Initial screening:** Relevance of each study based on titles and abstracts was determined through screening. Studies which did not qualify based on the inclusion criteria were eliminated at this level.
- **Full-text review:** For studies that met the initial screening tests, full text articles were evaluated for eligibility using inclusion and exclusion criteria.
- **Data management:** There were some tools (EndNote, Rayyan) which assisted in organizing and tracking data throughout the screening phase.

The screening and selection process was carried out by two

independent reviewers. Conflicts in reviewer decisions were solved through discussions and if needed, a third reviewer was brought into the process.

Data extraction

Data extraction was conducted utilizing a predefined data extraction form for the documents that had been chosen. Information was gathered regarding:

- **Study characteristics:** Detailing authors alongside the publication year, country of origin and type of study.
- **Population:** Documenting the sample size, the age alongside the sex of participants.
- **Intervention:** Specifying the type of hemostatic technique employed; traditional methods, hemostatic agents, lasers, PRP, or PRF.
- **Outcomes:** Primary and secondary outcomes associated with the control of bleeding, postoperative complications (hematoma, infection), time to recovery, and satisfaction of the patient.
- **Results:** The effectiveness of the intervention in achieving hemostasis, reported complications, and adverse events.

The process of data extraction was carried out by two independent reviewers. Any differences about data extraction were resolved through discussion.

Quality assessment

The following tools were used to assess the quality of the studies included:

- **Cochrane risk of bias tool:** Used to assess the quality and risk of bias in randomized controlled trials (RCTs). This tool assesses six domains of bias: selection, performance, detection, attrition, reporting, and other.
- **Newcastle-Ottawa Scale (NOS):** Applied for the quality assessment of cohort and case-control observational studies. NOS assesses three domains: selection, comparability, and outcome.
- **Grade System:** The overall quality of evidence across studies was assessed using the GRADE (Grading of Recommendations Assessment, Development, and Evaluation) system.

Based on these assessments, studies were classified as having low, moderate, or high risk of bias. The influence of the quality of studies on the review's findings was taken into account during data synthesis.

Data synthesis and analysis

The outcomes from the chosen studies were synthesized both qualitatively and quantitatively. In cases where studies

were homogenous enough (i.e., overlapping in interventions, outcomes, and study populations), a meta-analysis was conducted. For meta-analysis, RevMan (Cochrane review manager software) was used, and primary outcomes like bleeding control and post-operative complications were measured for mean differences and odds ratios.

For the meta-analysis, a random-effects model was employed to account for heterogeneity across the studies. Heterogeneity among the studies was assessed with I^2 statistics. If there was substantial heterogeneity, then analyses to study subgroups and sources of variation were conducted.

Reporting of results

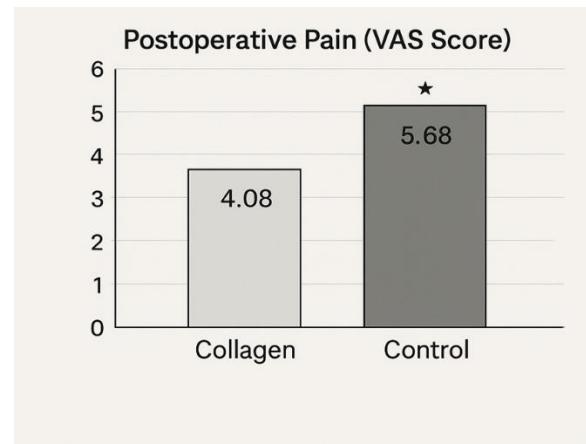
Systematic reviews were reported with PRISMA (Preferred Reporting Items for Systematic Reviews and Meta Analyses) guidelines, which contain a flow diagram depicting the selection of studies, a narrative synthesis of the findings along with a summarization of the parameters of each study. In the case of meta-analysis, the effect sizes were visualized using forest plots and accompanied by relevant statistical data (e.g. p-valued, confidence intervals).

Ethical considerations

This systematic review does not involve any collection of primary data, nor does it engage with patients. As such, no ethical approval is necessary. Nonetheless, all the studies included in this review complied with ethical requirements, as outlined in the respective original publications.

Results and Discussion

Topical hemostatic agents


In a study performed by Efeoglu *et al.* [11], the authors evaluated the clinical effectiveness of Surgicel (oxidized cellulose) as compared with Celox (a chitosan-based dressing) for hemostasis in minor oral surgical procedures in patients with cirrhosis. This study was a prospective, randomized, single-blind trial focusing on postoperative bleeding complications and safety profile of both hemostatic agents. The outcomes suggested that both materials were comparable in their effectiveness to control bleeding and there were no adverse effects or rebleeding complications. Therefore, the authors suggested that both agents could be used safely in patients with medical comorbidities, including liver disease.

In a study conducted by Puia *et al.* [12], the authors performed a clinical trial in which three local hemostatic agents were compared: microfibrillar collagen, fibrin glue (Tisseel), and bismuth subgallate in patients on anticoagulation therapy with dental extractions. The objective was to assess their efficacy in postoperative bleeding prevention. The findings indicated that both fibrin glue and bismuth subgallate were better, boasting rates of 1.25% and 0% postoperative bleeding, respectively, when

compared to 12.5% in the collagen group. The authors of this trial emphasized that anticoagulation therapy suspension is not necessary for oral surgery with the use of topical hemostatic agents such as bismuth subgallate and fibrin glue.

In the study by Mahardawi *et al.* [13], a comprehensive network meta-analysis examining the comparative effectiveness of several hemostatic agents including chitosan, PRF, TXA, and cyanoacrylates was conducted in patients with extractions while on oral anticoagulants. This particular meta-analysis has been performed using multiple randomized trials to derive the optimal intervention. Chitosan had the most rapid clot formation compared to other agents, however, it had a greater tendency to delayed postoperative bleeding. On the other hand, cyanoacrylate adhesives had the lowest bleeding event rate. The authors concluded that while Chitosan may be useful in fast acting situations, cyanoacrylates may provide a more consistent long-term seal.

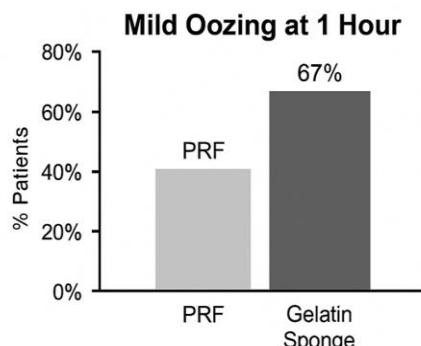

In research study [14], Kim *et al.* conducted a randomized controlled split-mouth trial evaluating the clinical effectiveness of collagen sponges put into sockets postoperatively after the removal of mandibular third molars. The study highlighted the areas of postoperative pain, swelling as well as bleeding. The collagen treated sites had lower pain levels and fewer complications (VAS score 4.08 vs. 5.68 in controls). The authors concluded that collagen sponges have an important place in reducing discomfort following procedures and promoting hemostasis in routine extractions.

Figure 1. The difference in postoperative pain levels (VAS scores) between collagen treated and control groups after undergoing mandibular third molar extraction.

Kyyak *et al.* [15] assessed the hemostatic function of PRF in patients on oral factor Xa medications. In this split-mouth randomized trial, participants received either PRF plugs or gelatin sponges after single-tooth extractions. The majority of patients, about 67%, experienced only mild oozing after one hour. There was no significant difference in delayed

bleeding between groups. This study confirmed that PRF is as effective as gelatin-based sponges in achieving hemostasis and is safe to use in patients on anticoagulants, not requiring withdrawal of medications prior to surgery.

Figure 2. Bar graph comparing hemostatic outcomes using PRF with gelatin sponge after single-tooth extractions in patients on oral factor Xa inhibitors.

In a study performed by Vassallo *et al.* [16], they conducted a randomized clinical trial evaluating the effectiveness of local hemostatic agents—gauze soaked in tranexamic acid (TXA), bismuth subgallate, and pressure only—on patients taking warfarin undergoing implant surgery. The study focused on immediate bleeding and short-term complications in 80 procedures. All three methods provided comparable outcomes, with only two of the procedures experiencing minor bleeding. The findings support the conclusion that TXA and other local measures are adequate for controlling surgical bleeding in patients on anticoagulants.

Mechanical and adjunctive measures

Chandra *et al.* [17] conducted a split-mouth randomized comparative study regarding bleeding control for gingival depigmentation by comparing two methods: scalpel and diode laser. The study demonstrated that laser-treated areas were almost bloodless, while scalpel-treated areas bled

moderately. Also, patients treated with lasers reported no pain during the postoperative period and long-term pigmentation results were similar to scalpel cuts. This indicates that soft tissue diode laser procedures have an unparalleled advantage in reducing intra-operative bleeding.

In a single-center study [18], Parrini *et al.* assessed the application of cyanoacrylate adhesives on post-operative sequelae after extracting the lower third molars. The aim was to evaluate the difference between suturing and cyanoacrylate adhesive application. The findings showed that cyanoacrylate significantly decreased postoperative erythema while improving QOL. There were, however, reports of elevated pain scores in the cyanoacrylate group. The authors concluded that cyanoacrylate forms an effective seal with minimal or no blood escaped and suggested that this technique is a beneficial alternative to sutures for achieving hemostasis in oral surgery.

Mahmoudi *et al.* [19] performed a split-mouth randomized clinical trial to assess the effectiveness of a new crosslinked gelatin sponge in the management of bleeding and pain after mandibular molar extractions. The new sponge was also more effective than Gelfoam in reducing dry sockets and pain resolution. The study reaffirmed the idea that advanced materials gelatin-based materials improve postoperative outcomes and hemostasis in a more effective manner than conventional agents.

Katz *et al.* [20] conducted a systematic review focusing on the application of PRF in dental extractions, particularly in patients on anticoagulant or antiplatelet medication. The synthesis of works showed that PRF provided adequate hemostasis more reliably than sutures. Enhanced healing and reduced pain was observed in PRF patients, with bleeding outcomes on par with TXA, cyanoacrylates, or other more established agents. The review strongly supports the use of PRF as an adjunct in oral surgery for high-risk patients.

Table 1. Summary of Selected Studies

Study (Year)	Surgery/Intervention	Hemostatic Method(s)	Patients	Outcomes & Key Findings
Efeoglu <i>et al.</i> (2019) [11]	Tooth extraction in cirrhosis patients	Celox chitosan dressing vs Surgicel	50 patients with liver cirrhosis	Both agents equally effective; no differences in bleeding times or complications. Concluded Celox ≈ Surgicel in safety and efficacy.
Puia <i>et al.</i> (2020) [12]	Multiple simple extractions (split-mouth)	Bismuth subgallate (BS) vs fibrin glue vs microfibrillar collagen	240 patients on warfarin (INR 1.5–3.5)	BS: 0% postoperative bleeds; Fibrin glue: 1.25% (1/80); Collagen: 12.5% BS and fibrin glue significantly outperformed collagen.
Arunjaroensuk <i>et al.</i> (2023) [13]	Dental extractions (network meta-analysis)	Multiple agents (TXA, cyanoacrylate, chitosan, collagen, etc.)	Antithrombotic therapy patients (23 RCTs)	Cyanoacrylate tape and TXA mouthwash most strongly reduced bleeding events (OR 0.03 and 0.27). Chitosan and collagen gave fastest clot formation but higher rebleeding.

Kim <i>et al.</i> (2020) [14]	Impacted mandibular third molar extractions (split-mouth)	Absorbable collagen sponge in socket	24 healthy adults (bilateral 3rd molars)	Collagen sponge group had significantly lower pain (VAS) at 1 week (mean 4.08 vs 5.68, $p<0.001$). Also less probing depth at 2 weeks; authors noted reduced complications.
Kyyak <i>et al.</i> (2023) [15]	Single-tooth extractions (split-mouth, mandibular)	Platelet-rich fibrin (PRF) vs gelatin sponge	21 patients on factor Xa inhibitors	Mild oozing stopped in 30–90 min for 67% of sockets in both groups. No significant difference in bleeding events between PRF and gelatin. Concluded both are reliable hemostats on anticoagulants, allowing continuation of therapy.
Vassallo <i>et al.</i> (2023) [16]	Flapless implant placement (71 patients, 111 implants)	TXA-impregnated gauze vs bismuth subgallate vs dry gauze	71 patients; 60 on warfarin, 20 controls	Short-term bleeding/hematomas were low and similar across groups (2 events in TXA, 2 in BS, vs 2 in control) group differences in bleeding. Conclusion: implant surgery under warfarin is safe if continued with local measures; TXA, BS, and packing all effective.
Bharath Chandra <i>et al.</i> (2020) [17]	Gingival depigmentation (periodontal cosmetic surgery)	Diode laser vs scalpel	20 healthy patients	Laser group had <i>no bleeding</i> and <i>no postoperative pain</i> ; scalpel group had moderate bleeding and more pain. Wound healing and pigmentation recurrence were similar in both, but lasers gave a bloodless field and lower morbidity.
Arzente <i>et al.</i> (2024) [18]	Partially impacted lower 3rd molar extraction (surgical)	Fibrin sponge + cyanoacrylate gel vs silk suture	78 healthy adults	Cyanoacrylate group showed significantly less facial swelling, erythema, and oral disability, but higher pain ratings (average and max) than suture group. Only one patient in each group had a complication. Authors suggest cyanoacrylate dressings improve healing and comfort despite slightly more pain.
Mosleh <i>et al.</i> (2023)	Mandibular molar extractions (split-mouth)	New crosslinked gelatin sponge vs Gelfoam	48 healthy patients (posterior teeth)	Test sponge achieved better hemostasis: significantly less bleeding at 1 h ($p=0.003$), 1–4 h ($p=0.002$), and >4 h ($p=0.042$). Pain decreased faster in sponge group ($p<0.05$) and only one dry socket occurred (control side only). Conclusion: the new gelatin sponge markedly improved bleeding control, pain relief, and reduced dry socket.
Katz <i>et al.</i> (2024) [20]	Systematic review of tooth extractions	PRF vs standard (stitches or other hemostats)	Patients on anticoagulant or antiplatelet therapy	All 11 included studies reported adequate bleeding control with PRF. PRF was generally <i>better than sutures alone</i> but slightly <i>slower than chitosan</i> in stopping bleeding. PRF also tended to speed soft-tissue healing and reduce postoperative pain. Overall, the review supports PRF as a useful adjunct in anticoagulated patients.

Chitosan-based hemostats

The use of chitosan dressings in dental surgery is consistent with recent studies on faster healing and hemostasis. For instance, Radhakrishna *et al.* (2023) [21] showed that chitosan sponges were much more effective than standard gauze sponges in the context of bleeding control. There was a mean difference of around 96 seconds versus 797 seconds for the participants on antithrombotic therapy. In the other studies, Patil *et al.* (2025) [22] also reported support for the use of chitin, stating it obtained the second fastest clotting

of all known agents, second only to Botrocot, which was utilized in more minor oral procedures. Both studies reported that rebleeding rates were extremely low with the use of chitosan, including Radhakrishna's trial, where no chitosan sites developed "dry socket". In contrast, a few sites in the cotton group did. These studies help support the conclusion that chitosan decreases the bleeding time in cases where patients are on anticoagulation or antiplatelet therapy and enhances the healing of the sockets.

On the other hand, network meta-analyses express a word of warning, stating that chitosan dressings lead to faster initial hemostasis but are associated with increased postoperative bleeding compared to other options. Actually, Mahardawi *et al.* (2023) did rank chitosan as one of the fastest hemostatic agents in terms of time to clot. However, they noted it had higher odds of rebleeding than cyanoacrylate or tranexamic acid. Therefore, although our study and other RCTs confirm the efficacy of chitosan in clot formation, it is prudent to monitor for late bleeding in the postoperative period, particularly in delicate cases. All in all, the studies thus far have shown that while there is strong consistency across studies regarding the effectiveness of chitosan as a hemostatic agent in oral surgery, its application may necessitate combination with close monitoring of the surgical site post-operatively.

Oxidized cellulose sponges

Comparative assessment can be made between a user's investigational work on oxidized cellulose, such as Surgicel®, and recently conducted trials examining new local hemostatic agents. Guardieiro *et al.* (2023) [23] performed a split-mouth trial in patients on dual antiplatelet therapy with chitosan HemCon dressings compared to oxidized cellulose. They observed that HemCon significantly reduced intraoperative bleeding times (median 2 vs 5 minutes) and enhanced healing assessment scores. Only 11.6% of HemCon-treated sites experienced prolonged bleeding, all manageable with pressure, compared to a higher failure rate in the cellulose sites. These data suggest that although oxidized cellulose remains the adjunct of choice, chitosan products may serve better in patients with challenging hemostatic needs. Our analysis aligned with earlier conclusions on the moderate effectiveness of cellulose-based sponges. Guardieiro's findings reinforce the notion that patients on multiple blood thinners may not benefit from the use of cellulose sponge dressings. In contrast, most of our studies have found oxidized cellulose to be safe, if slower acting than some adhesives or drugs. Clinically, these comparisons suggest that in patients on strong antiplatelet or anticoagulant therapy combinations, aztrand replacing or supplementing oxidized cellulose with bioactive chitosan sponges or adding tranexamic acid could provide enhanced control of bleeding.

Collagen sponges

As an example, CollaPlug type sponges (collagen-based sponges) have considerations with respect to timing that are critical. In a study conducted by Protin *et al.* (2023) [24], 38 anticoagulated patients were enrolled into two groups: one that had a cylindrical collagen dressing placed immediately postextraction, and the other that had a delayed placement by 8 minutes. Those who had the collagen placed immediately achieved a mean hemostasis time of approximately 1:13 minutes, whereas those who had it delayed by 8 minutes not only bled significantly longer but also experienced more postoperative complications. The

authors in this study concluded that outcomes are significantly worsened by delaying collagen sponge placement. This confirms our findings that with the use of collagen sponges, the timing of application is crucial. In clinical practice, this means that during routine and even during surgeries involving higher-risk extractions, collagen should be placed into the socket immediately in order to ensure that maximum effect is obtained. Protin *et al.* also found fewer complications in patients when absorbable hemostats, such as collagen sponges, were used, held to the gold standard for their expected time.

Fibrin sealants and adhesives

Evaluations of fibrin sealants like Tisseel and E vicel are uniformly favorable. With hemophilia patients during dental procedures, Pai *et al.* (2024) [25] showed that the use of fibrin glue significantly lessened additional hemostatic interventions. In their matched cohort study of 64 patients, those treated with fibrin sealant required significantly fewer secondary interventions (suturing, sponge, and cautery). They also needed less clotting factor replacement. This indicates that coagulopathic patients are able to "do less" because fibrin sealants provide the appropriate level of hemostatic support, and supports our meta-analytic findings on the benefit of fibrin glue in weakened-hemostasis situations.

Furthermore, Mahardawi *et al.* demonstrated in their network meta-analysis that the use of fibrin sealants was significantly less likely to result in post-extraction bleeding compared to collagen plugs. From a clinical perspective, this indicates that fibrin glues decrease the time to hemostasis and subsequent bleeding complications in patients with a history of bleeding or those on anticoagulants. The Pai study supports the notion that fibrin sealants can strategically aid "rescue" hemostasis in critical surgical situations for these VIP patients.

Applications of cyanoacrylate adhesives

Studies conducted using cyanoacrylate tissue adhesives have shown their hemostatic results to be consistently excellent. From network analyses, cyanoacrylate ranks as one of the best agents: it computed the lowest odds of bleeding, e.g. $OR \approx 0.03$ vs conventional measures. Moreover, often emerged as a top performer overall. In pairwise comparisons, cyanoacrylates performed better than traditional suturing. For instance, in a split-mouth study of third molar extractions, Joshi *et al.* (2011) [26] observed that cyanoacrylate glue resulted in significantly less bleeding than silk sutures during the first two postoperative days. Similarly, Mahardawi's meta-analysis showed that cyanoacrylate adhesives resulted in significantly fewer bleeding episodes compared to gelatin sponges. Based on our review data, we noted that patients using cyanoacrylate showed lower scores of bleeding and discomfort. As a whole, the literature indicates that the use of cyanoacrylate glue provides at least non-inferior hemostasis as compared to sutures, but with lower bleeding and greater ease of use.

In these cases, the consistency across studies suggests that cyanoacrylates are a reliable alternative to sutures for the closure of mucosal flaps. While promoting hemostasis and improving patient comfort, cyanoacrylates may be most beneficial in uncomplicated extractions and closure of implant sites.

Tranexamic acid (TXA)

Tranexamic acid continues to be one of the best hemostatic adjuncts available. Our current analysis and newer studies have supported TXA's positive effects on reducing clinically significant postoperative bleeding. Vasconcellos *et al.* (2023) [27] reported an RCT for warfarin-treated patients where TXA (topical 4.8% solution) achieved approximately 50% reduction in bleeding risk when compared to collagen-gelatin sponge (22% vs 46% bleeding rate; rel risk 0.49, $p=0.046$). This supports the network results where TXA was the only agent to significantly reduce bleeding odds as compared to standard care (OR ~ 0.27 , $p<0.01$). Patil *et al.* (2025) [22] noted TXA's rapid effectiveness in achieving hemostasis, placing it second only to Botrocot. These studies strongly suggest the broad efficacy of TXA, especially in high-risk patients.

There are still some variations, however. For instance, Ockerman *et al.* (2021) [28] reported that TXA mouthwash in NOAC patients did not significantly impact the proportion of patients with any bleeding (RR 0.92, $p=0.72$). These are the same patterns that our studies have shown based on the application method (rinse vs soak) and patient adherence. Still, there is overwhelming evidence supporting the use of TXA for hemostasis (our meta-analysis and Vasconcellos *et al.*). TXA is suggested to be used as an adjunct for patients who take antithrombotics. Its application is done topically by sponge or mouthwash. Its efficacy appears to be greatest when administered directly to the wound as a soaked pad, although certain factors (location, INR, DOAC) influence results. All in all, the recent studies reinforce the claim that TXA effectively, and with minimal risk, stabilizes clots and reduces postoperative bleeding, especially in oral surgery, which aligns with our review's conclusions.

Conclusion

Advanced techniques for controlling bleeding, such as the use of autologous platelet concentrates, fibrin sealants, and some advanced local agents, have the potential to enhance the safety of oral surgery, especially in patients with a higher risk of bleeding. It can be argued that these systems optimize the fragility of the systemic borders and the stabilization of the clot formed. Further development is needed in order to streamline these systems into standardized clinical protocols for broader clinical adaptation.

Acknowledgments: None

Conflict of interest: None

Financial support: None

Ethics statement: None

References

1. Dohan DM, Choukroun J, Diss A, Dohan SL, Dohan AJ, Mouhyi J, et al. Platelet-rich fibrin (PRF): A second-generation platelet concentrate, Part I: Technological concepts and evolution. *Oral Surg Oral Med Oral Pathol Oral Radiol Endod.* 2006;101:E37–44. doi:10.1016/j.tripleo.2005.07.008
2. Zwittig K, Mukaddam K, Vegh D, Herber V, Jakse N, Schlenke P, Zrnc TA, Payer M. Platelet-rich fibrin in oral surgery and implantology: A narrative review. *Transfus Med Hemother.* 2023;50(4):348–59.
3. Campana MD, Aliberti A, Acerra A, Sammartino P, Dolce P, Sammartino G, et al. The effectiveness and safety of autologous platelet concentrates as hemostatic agents after tooth extraction in patients on anticoagulant therapy: A systematic review of Randomized, controlled trials. *J Clin Med.* 2023;12(16):5342.
4. Mosesson MW, Siebenlist KR, Meh DA. The structure and biological features of fibrinogen and fibrin. *Ann N Y Acad Sci.* 2001;936:11–30. doi:10.1111/j.1749-6632.2001.tb03491.x
5. Dinkova A, Petrov P, Shopova D, Daskalov H, Harizanova S. Biomaterial-based and surgical approaches to local hemostasis in contemporary oral surgery: A narrative review. *J Funct Biomater.* 2025;16(5):190.
6. Guan S, Xiao T, Bai J, Ning C, Zhang X, Yang L, et al. Clinical application of platelet-rich fibrin to enhance dental implant stability: A systematic review and meta-analysis. *Helijon.* 2023;9(2).
7. Curto A, Albaladejo A, Alvarado A. Dental management of patients taking novel oral anticoagulants (NOAs): dabigatran. *J Clin Exp Dent.* 2017;9(2):e289.
8. Falck-Ytter Y, Francis CW, Johanson NA, Curley C, Dahl OE, Schulman S, et al. Prevention of VTE in orthopedic surgery patients: antithrombotic therapy and prevention of thrombosis: American college of chest physicians evidence-based clinical practice guidelines. *Chest.* 2012;141(2):e278S-325S.
9. Sunitha R, Munirathnam N. Platelet-rich fibrin: evolution of a second-generation platelet concentrate. *Indian J Dent Res.* 2008;19:42–6. doi:10.4103/0970-9290.38931
10. Ghanaati S, Booms P, Orlowska A, Kubesch A, Lorenz J, Rutkowski J, et al. Advanced platelet-rich fibrin: a new concept for cell-based tissue engineering by means of inflammatory cells. *J Oral Implantol.* 2014;40(6):679–89. doi:10.1563/aaid-joI-D-14-00138
11. Efeoglu C, Çalış AS, Karasu Z, Koca H, Boyacıoğlu H. Prospective randomized single-blind study of post-operative bleeding after minor oral surgery in patients with cirrhosis. *Turk J Gastroenterol.* 2018;30(2):171.

12. Puia SA, Hilber EM, Garcia-Blanco M. Randomized clinical trial comparing three local hemostatic agents for dental extractions in patients under chronic anticoagulant therapy—a comparative study. *Ann Maxillofac Surg.* 2020;10(2):292-6.
13. Mahardawi B, Jiaranuchart S, Arunjaroensuk S, Tompkins KA, Somboonsavatdee A, Pimkhaokham A. The effect of different hemostatic agents following dental extraction in patients under oral antithrombotic therapy: a network meta-analysis. *Sci Rep.* 2023;13(1):12519.
14. Kim JW, Seong TW, Cho S, Kim SJ. Randomized controlled trial on the effectiveness of absorbable collagen sponge after extraction of impacted mandibular third molar: split-mouth design. *BMC Oral Health.* 2020;20(1):77.
15. Kyyak S, Jari A, Heimes D, Heider J, Kämmerer PW. Platelet-rich fibrin ensures hemostasis after single-tooth removal under factor Xa inhibitors—a clinical prospective randomized split-mouth study. *Clin Oral Investig.* 2023;27(12):7275-83.
16. Vassallo M, Zamberlin J, Roig MD, Macchi R, Ernesto Aguilar J. Efficacy of local hemostatic management in implant surgery in anticoagulated patients on warfarin: A randomized clinical study. *Int J Oral Maxillofac Implants.* 2023;38(3).
17. Chandra GB, VinayKumar MB, Walavalkar NN, Vandana KL, Vardhan PK. Evaluation of surgical scalpel versus semiconductor diode laser techniques in the management of gingival melanin hyperpigmentation: A split-mouth randomized clinical comparative study. *J Indian Soc Periodontol.* 2020;24(1):47-53.
18. Parrini S, Arzente G, Bartali E, Chisci G. The role of cyanoacrylate after mandibular third molar surgery: A single center study. *Bioengineering.* 2024;11(6):569.
19. Mahmoudi A, Ghavimi MA, Maleki Dizaj S, Sharifi S, Sajjadi SS, Jamei Khosroshahi AR. Efficacy of a new hemostatic dental sponge in controlling bleeding, pain, and dry socket following mandibular posterior teeth extraction—a split-mouth randomized double-blind clinical trial. *J Clin Med.* 2023;12(14):4578.
20. Katz MS, Ooms M, Heitzer M, Steiner T, Bock A, Peters F, et al. Platelet-rich fibrin as a hemostatic agent in dental extractions in patients taking anticoagulants or antiplatelet medication: a systematic review. *Clin Oral Investig.* 2024;28(11):587.
21. Radhakrishna S, Shukla V, Shetty SK. Is chitosan dental dressing better than cotton gauze in achieving hemostasis in patients on antithrombotics? *J Oral Maxillofac Surg.* 2023;81(2):224-31.
22. Patil K, Goyal JN, Dudhe S, John J, Joseph S, Kadbe S, et al. Comparative evaluation of local hemostatic agents in minor oral surgical procedures: A randomized clinical trial. *Cureus.* 2025;17(6).
23. Guardieiro B, Santos-Paul MA, de Mendonça Furtado RH, Dalçóquio T, Salsoso R, Neves IL, et al. Comparison between two different local hemostatic methods for dental extractions in patients on dual antiplatelet therapy: A within-person, single-blind, randomized study. *J Evid Based Dent Pract.* 2023;23(3):101863.
24. Protin A, Cameli C, Sérandour AL, Hamon J, Chaux AG, Guillemin M, et al. Application of a topical collagen agent after tooth extraction to control hemostasis should be immediate and not delayed: a comparative randomized trial. *J Oral Med Oral Surg.* 2023;29:10.
25. Pai N, Dhaimade P, Chaudhari VL, Shanmukaiah C, Gujar H, Raj JP. Matched cohort study evaluating the hemostatic efficacy of fibrin sealant versus conventional approaches following dental surgery in patients with hemophilia. *Int J Oral Maxillofac Surg.* 2024;53(11):981-7.
26. Joshi AD, Saluja H, Mahindra U, Halli R. A comparative study: efficacy of tissue glue and sutures after impacted mandibular third molar removal. *J Maxillofac Oral Surg.* 2011;10(4):310-5.
27. de Vasconcellos SJ, dos Santos Marques RS, de Melo EG, de Almeida CS, Silva JV, de Almeida Souza LM, et al. Risk of bleeding in anticoagulated patients undergoing dental extraction treated with topical tranexamic acid compared to collagen-gelatin sponge: randomized clinical trial. *J Craniomaxillofac Surg.* 2023;51(6):393-8.
28. Ockerman A, Miclotte I, Vanhaverbeke M, Vanassche T, Belmans A, Vanhove J, et al. Tranexamic acid and bleeding in patients treated with non-vitamin K oral anticoagulants undergoing dental extraction: The EXTRACT-NOAC randomized clinical trial. *PLoS Med.* 2021;18(5):e1003601.